
Equipoise-Image
#include>

macro authoring utility
version 1.0, 10 March 2002

Background

Equipoise-Image ('EqPi') is a Macintosh Classic application that extends the widely-used image
processing packages NIH Image and Object-Image. EqPi can run macro programs written in the
NIH Image and Object-Image macro languages without change, and adds several capabilities
not available in either of these applications.

To download Equipoise-Image, visit the Equipoise Imaging, LLC home page at:

http://www.eqpi.net/eqpi/

Description: #include> macro authoring utility

While it is advantageous for many compiled language development environments to provide
compiler directive statements that aid during precompilation, interpreted languages (such as
the Image-family macro language) typically do not. In particular, none of the Image-family
macro language variants provides an include compiler directive. This capability is provided via
a separate macro program referred to as the #include> macro authoring utility. The utility
allows macro authors to load code from a commonly-used function, procedure, or other routine
directly into their macros by using a short #include> command that indicates the name of a file
containing that code. This facilitates and promotes the reuse of standard program modules.

Instructions

1. Preparation
The #include> macro authoring utility makes use of information stored in two places:

(i) a folder entitled 'Includes', where files to be included are stored. This folder must exist

1

when the #include> command is used.

(ii) the 'EqPi_prefs' file, a text file in System Folder/Preferences folder of the startup
volume. This file defines the path to the 'Includes' folder, using the following syntax:

#include>StartupVolume:folder:subfolder:...:subfolder:

A single 'Includes' folder is typically created in the folder containing the EqPi application.

2. Command syntax
The #include> command is used with the following syntax in macro language programs:

{#include>filename}

filename is the name of the file that the author wishes to include in the macro program in which
the #include> command is used. When this line is encountered in a macro program, the #include>
macro authoring utility will insert the text content of the indicated file into the macro program.
Note that the #include> command must be enclosed in {comment braces}. A macro program
may contain multiple #include> commands.

3. Terminator line
Macro programs that use the #include> command must end with the single line:

{!}

4. Use

A. Open and load the #include> macro authoring utility text file. The utility is itself a macro
language program.

B. Open a text window containing the macro language program under development. Type the
#include> command into the macro language program under development wherever you would
like to have code inserted. Be certain that the command correctly names the file to be included
and that this file exists in the 'Includes' folder.

C. Select the window containing the macro language program under development, and enter the
[F12] function key. A new text window named after the development window (but with '.incl'
appended) will be created, the macro language program text will be copied to this window, and
#include> commands in the program will be replaced by the content of files that they name.

2

5. Example

The path to the 'Includes' folder stored in the 'EqPi_prefs' file on the startup volume 'HD' is:

HD:EqPi folder:Includes:

Here is text from a sample macro language program in the 'DevSample' window:

macro 'DevSample';

begin

PutMessage('yep');

end;

{#include>func AppSpc}

{#include>func I2S}

{!}

Here is the 'func AppSpc' file content:

function AppSpc(theStr: string; theInt: integer;): string;

{appends spaces to a string to reach a fixed length}

var

int1: integer;

str1: string;

begin

str1 := theStr;

for int1 := 1 to (theInt - length(theStr)) do begin

str1 := concat(str1, ' ');

end;

 AppSpc := str1;

end;

Here is the 'func I2S' file content:

function I2S(theInt: integer;): string;

{converts as integer to string with no leading spaces}

var

str1: string;

3

begin

str1 := concat(theInt);

While (ord(str1)<48) do begin

Delete(str1, 1, 1);

end;

I2S := str1;

end;

Execution of the #include> macro authoring utility (with the 'Development Macro' window
active) creates a new 'DevSample.incl' window with the following content:

macro 'DevSample';

begin

PutMessage('yep');

end;

function AppSpc(theStr: string; theInt: integer;): string;

{appends spaces to a string to reach a fixed length}

var

int1: integer;

str1: string;

begin

str1 := theStr;

for int1 := 1 to (theInt - length(theStr)) do begin

str1 := concat(str1, ' ');

end;

 AppSpc := str1;

end;

function I2S(theInt: integer;): string;

{converts as integer to string with no leading spaces}

var

str1: string;

begin

str1 := concat(theInt);

While (ord(str1)<48) do begin

Delete(str1, 1, 1);

end;

I2S := str1;

end;

4

{!}

